The E1A oncogene induces resistance to the effects of 1,25-dihydroxyvitamin D3 on inhibition of growth of mouse keratinocytes.
نویسندگان
چکیده
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] inhibited DNA synthesis in transformed mouse keratinocytes (Pam212) in a time- and dose-dependent manner as measured by [3H]thymidine incorporation. To investigate the mechanism through which 1,25-(OH)2D3 acts, we examined its effects on Pam212 cells further transformed with the E1A oncogene. Here, we show that transformation of the cells with the E1A oncogene induced resistance to the effects of 1,25-(OH)2D3 on inhibition of growth of Pam212 cells. While 1,25-(OH)2D3 treatment increased the level of expression of vitamin D receptor mRNA 20-fold in parental cells, the E1A-transformed cells failed to express vitamin D receptor mRNA even after treatment with 1,25-(OH)2D3. Transfection of the E1A-transformed cell line with an expression construct encoding the vitamin D receptor restored receptor expression as well as the inhibition of growth by 1,25-(OH)2D3. These results suggest that one of the mechanisms for acquisition of 1,25-(OH)2D3 resistance induced by E1A may involve loss of vitamin D receptor inducibility by 1,25-(OH)2D3.
منابع مشابه
اثر هم افزایی کاربرد توأم زهر زنبور عسل و25،1- دی هیدروکسی ویتامینD3 برالقای تمایز رده ی سلولی سرطانی پرومیلوسیتی HL-60
Introduction & Objective: Acute promyelocytic leukemia (APL) is a kind of acute leukemia characterized by a balanced t (15, 17) translocation which fails to develop into mature cells and proliferate in an unregulated fashion. In the recent years, in addition to combinatoral chemotherapy to treat unmature cancerous cells, differentiation therapy by differentiating agents as a novel procedure ...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کامل8-Cl-Adenosine enhances 1,25-dihydroxyvitamin D3-induced growth inhibition without affecting 1,25-dihydroxyvitamin D3-stimulated differentiation of primary mouse epidermal keratinocytes
BACKGROUND Epidermal keratinocytes continuously proliferate and differentiate to form the mechanical and water permeability barrier that makes terrestrial life possible. In certain skin diseases, these processes become dysregulated, resulting in abnormal barrier formation. In particular, skin diseases such as psoriasis, actinic keratosis and basal and squamous cell carcinomas are characterized ...
متن کاملTRPV6 Determines the Effect of Vitamin D3 on Prostate Cancer Cell Growth
Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1...
متن کاملDisruption of vitamin D receptor-retinoid X receptor heterodimer formation following ras transformation of human keratinocytes.
A partial resistance to the growth inhibitory influence of 1, 25-dihydroxyvitamin D3 is apparent when immortalized keratinocytes are transformed by the ras oncogene. The vitamin D receptor (VDR) was isolated, analyzed, and found to be identical in normal, immortalized, and ras-transformed keratinocytes. Subsequently, nuclear extracts from immortalized and ras-transformed keratinocytes were anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 54 23 شماره
صفحات -
تاریخ انتشار 1994